[personal profile] torquetum
 Robertson, R.L. (2013). Early vector calculus: A path through multivariable calculus. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 23(2), 133-140.
 
The author argues for an ordering of topics in a multivariable calculus course which brings the three big theorems as early as possible. The textbook he uses is a standard maths text, with the three big theorems coming last. He lists the topics to be covered before Divergence Theorem can be covered, locating it (by my estimate) a bit less than halfway through the course. Thereafter he covers a few more topics and get to Stokes’ Theorem (probably about 2/3 of the way through the course). Green’s Theorem is presented as a special case of Stokes’ Theorem. The benefits of this approach are argued for convincingly and a few drawbacks are also covered (such as parametrised surfaces before parametrised curves). This is the second paper I have read which recommends Schey’s (2005) Div, Grad, Curl and All That: An Informal Text on Vector Calculus, so I really must track that text down. The practical interpretations of div and curl are emphasised as in so many papers I’m reading. I found this paper intriguing and I also greatly appreciated that the author broke the course down into sufficient detail that I, or someone else, could easily structure a course as he has done.
 
Do not treat this blog entry as a replacement for reading the paper. This blog post represents the understanding and opinions of Torquetum only and could contain errors, misunderstandings or subjective views.
This account has disabled anonymous posting.
If you don't have an account you can create one now.
No Subject Icon Selected
More info about formatting

April 2021

S M T W T F S
    123
45678910
11121314151617
1819202122 2324
252627282930 

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Nov. 4th, 2025 11:49 pm
Powered by Dreamwidth Studios